1+2+2*2+2*2*2+2*2*2*2+```````2^63=(2-1)+2+
2^2+2^3+````+2^63=(2+2)+2^2+2^3+```+2^63-1=
(2*2+2^2)+2^3+```+2^63-1=(2^3+2^3)+2^4+2^5+```+2^63-1
=`````=2^63+2^63-1=2^64-1
如果你学过等比数列可以有公式:Sn=(1-an*q)/(1-q)=(1-q^n)/(1-q)
q为等比 an为第n项 Sn为前n项的和
1+2+2*2+2*2*2+2*2*2*2+```````2^63=(2-1)+2+
2^2+2^3+````+2^63=(2+2)+2^2+2^3+```+2^63-1=
(2*2+2^2)+2^3+```+2^63-1=(2^3+2^3)+2^4+2^5+```+2^63-1
=`````=2^63+2^63-1=2^64-1
如果你学过等比数列可以有公式:Sn=(1-an*q)/(1-q)=(1-q^n)/(1-q)
q为等比 an为第n项 Sn为前n项的和