已知f(x)=log3x,x∈[1,9],求函数y=f(x2)+f2(x)的值域.

1个回答

  • 解题思路:由f(x)=log3x,x∈[1,9],求函数y=f(x2)+f2(x)的定义域,再求函数的值域.

    ∵f(x)=log3x,x∈[1,9],

    ∴1≤x2≤9,1≤x≤9,

    ∴1≤x≤3,

    ∴0≤log3x≤1,

    ∴y=f(x2)+f2(x)=2log3x+log23x

    =(log3x+1)2-1,

    ∴0≤(log3x+1)2-1≤3.

    故函数y=f(x2)+f2(x)的值域为[0,3].

    点评:

    本题考点: 函数的值域.

    考点点评: 本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择.同时要注意函数的定义域.