y=2*(sinx/2+根号3cosx/2)=2*[sinx*cos(π/3)+cosx*sin(π/3)]=2sin(x+π/3)
因为x∈〔π/3,5π/6〕
所以x+π/3∈〔π/3,5π/6〕
所以y∈[1,2〕
且y的最小值为1 ,且当x+π/3=5π/6,即x=π/2时取得最小值
y=2*(sinx/2+根号3cosx/2)=2*[sinx*cos(π/3)+cosx*sin(π/3)]=2sin(x+π/3)
因为x∈〔π/3,5π/6〕
所以x+π/3∈〔π/3,5π/6〕
所以y∈[1,2〕
且y的最小值为1 ,且当x+π/3=5π/6,即x=π/2时取得最小值