tanA/2tanC/2=sin(A/2)sin(C/2)/[cos(A/2)cos(C/2)]
a+c=2b
sinA+sinC=2sinB
2sin[(A+C)/2]cos[(A-C)/2]=4sin(B/2)cos(B/2)
A+C=π-B
得cos[(A-C)/2]=2cos[(A+C)/2]
cos(A/2)cos(C/2)+sin(A/2)sin(C/2)=2[cos(A/2)cos(C/2)]-2sin(A/2)sin(C/2)
3sin(A/2)sin(C/2)=cos(A/2)cos(C/2)
于是tanA/2tanC/2=1/3