1/35+1/70+1/350+1/546+1/7903怎样简算?

1个回答

  • 1/35+1/70+1/350+1/546+1/7903

    =1/2*(1/5-1/7)+1/4*(1/5-1/7)+1/91*(1/2-1/3)+1/7*1/1129

    后面不知道了

    直接两项一通分求吧

    原式=3/70+1/350+1/546+1/7903

    =8/175+1/546+1/7903

    =8/(5*37)+1/(2*3*91)+1/(7*1129)

    分母之间全部互质 通分

    =(8*6*91+5*37)/(2*3*5*37*91)+1/(7*1129)

    =(7*11*59)/(2*3*5*37*91)+1/(7*1129)

    =(7*11*59*7*1129+2*3*5*37*91)/(2*3*5*37*91*7*1129)

    =(5143477*7)/(2*3*5*7*37*91*1129)=5143477/114040290

    或者1/35+1/70+1/350+1/546+1/7903 = 0.047672321773296