解题思路:由(z1-2)(1+i)=1-i,解得z1=2-i,设z2=a+2i,a∈R,则z1z2=(2-i)(a+2i)=(2a+2)+(4-a)i,由z1•z2∈R,能求出z2.
∵(z1-2)(1+i)=1-i,
z1-2=[1−i/1+i]=
(1−i)2
2=-i,
∴z1=2-i,
设z2=a+2i,a∈R,
则z1z2=(2-i)(a+2i)=(2a+2)+(4-a)i,
∵z1•z2∈R,
∴a=4,
∴z2=4+2i.
故答案为:4+2i.
点评:
本题考点: 复数代数形式的混合运算;复数相等的充要条件.
考点点评: 本题考查复数的代数形式的混合运算,是基础题.解题时要认真审题,仔细解答,注意等价转化思想的合理运用.