∫(1→e)(1+lnx)/x dx
=∫(1→e)(1+lnx) d(lnx)
=[lnx+1/2·(lnx)^2]|(1→e)
=[lne+1/2·(lne)^2]-[ln1+1/2·(ln1)^2]
=1+1/2-0
=3/2