√3(a.b)=√3(sinA,cosA).(cosC,sinC)
√3(sinAcosC+cosAsinC)=sin2B
√3sin(A+C)=2sinBcosB
√3sinB=2sinBcosB
在△ABC中sinB≠0
则:√3=2cosB
即:cosB=√3/2
所以:∠B=π/6
√3(a.b)=√3(sinA,cosA).(cosC,sinC)
√3(sinAcosC+cosAsinC)=sin2B
√3sin(A+C)=2sinBcosB
√3sinB=2sinBcosB
在△ABC中sinB≠0
则:√3=2cosB
即:cosB=√3/2
所以:∠B=π/6