函数f(x)=(a²x+b)/(x²+1)是定义在(-1,1)上的奇函数,且f(1/2)=2/5

1个回答

  • 1)因为f( x)是定义在(-1,1)上的奇函数所以f(2/1)=-2/5,所以(1/2a^2+b)/[(1/2)^2+1]=2/5,( -1/2a^2+b)/(-1/2)^2+1]=-2/5,所以a=正负1b=0,f(x)=x/x^2+1或者f(x)=-x/x^2+1

    2)2、

    证明:

    设:-1<x1<x2<1

    f(x1)-f(x2)

    =x1/(x1²+1) - x2/(x2²+1)

    =[x1(x2²+1) - x2(x1²+1)] / [(x1²+1)(x2²+1)]

    =(x1x2²+x1-x2x1²-x2) / [(x1²+1)(x2²+1)]

    =[x1x2(x2-x1)-(x2-x1)] / [(x1²+1)(x2²+1)]

    =[(x1x2-1)(x2-x1)] / [(x1²+1)(x2²+1)]

    ∵-1<x1<x2<1,∴x1x2<1

    ∴x1x2-1<0,x2-x1>0,x1²+1>0,x2²+1>0

    ∴f(x1)-f(x2)=[(x1x2-1)(x2-x1)] / [(x1²+1)(x2²+1)] <0

    ∴f(x1)<f(x2)

    ∴f(x)在(-1,1)上单调递增.

    3)、个人感觉第三题要加一个“x-1,x∈(-1,1)”

    ∵x-1,x∈(-1,1),

    ∴x∈(0,1)

    ∵f(x)是奇函数

    ∴-f(x)=f(-x)

    ∴f(x-1)+f(x)