已知f(x)是定义在【-1,1】上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有f(a)+f(b)/a+b>0成立,(1)判断f(x)在【-1,1】上的单调性,并证明它(2)解不等式f(x+1/2)0成立
令b=-b
∴[f(a)+f(-b)]/(a-b)>0==>[f(a)-f(b)]/(a-b)>0
∴f(x)在【-1,1】上的单调增;
(2)解析:f(x+1/2)
已知f(x)是定义在【-1,1】上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有f(a)+f(b)/a+b>0成立,(1)判断f(x)在【-1,1】上的单调性,并证明它(2)解不等式f(x+1/2)0成立
令b=-b
∴[f(a)+f(-b)]/(a-b)>0==>[f(a)-f(b)]/(a-b)>0
∴f(x)在【-1,1】上的单调增;
(2)解析:f(x+1/2)