设t=tan(θ/2),则dt=sec(θ/2)*dθ/2=(1+t^2)dθ/2,
sinθ=2t/(1+t^2),cosθ=(1-t^2)/(1+t^2),
∴∫dθ/sin(θ+π/4)
=2√2∫dt/(1+2t-t^2)
=2√2∫du/(2-u^2)
=ln[(√2+u)/(√2-u)]|
=2ln(√2+1),
其中u=t-1.
设t=tan(θ/2),则dt=sec(θ/2)*dθ/2=(1+t^2)dθ/2,
sinθ=2t/(1+t^2),cosθ=(1-t^2)/(1+t^2),
∴∫dθ/sin(θ+π/4)
=2√2∫dt/(1+2t-t^2)
=2√2∫du/(2-u^2)
=ln[(√2+u)/(√2-u)]|
=2ln(√2+1),
其中u=t-1.