只需证明A的特征向量中能够选出n为向量空间的一组基:(不妨设A是n行n列的)
首先设λ是A的特征值,那么λ^2是A^2的特征值,
∴(A^2)ξ=λ^2*ξ=Eξ=ξ
∴λ^2=1
∴λ=±1
∴A只有特征根±1
先找到1所对应的一组线性无关向量特征向量:
就是满足:Aξ=ξ的一组线性无关向量
也就是(A-E)ξ=0
很显然解空间的维数是:n1=n-rank(A-E)
∴可以从中选出n1个线性无关的特征向量.
在考虑以-1为特征根的特征向量:
也就是Aξ=-ξ
∴(A+E)ξ=0
显然解空间的维数是:n2=n-rank(A+E)
∴可以从中选出n2个线性无关的向量.
现在n1+n2=2n-rank(A+E)-rank(A-E)
现在只需要证明:rank(A+E)+rank(A-E)=n
这一步的证明并不难:先证明rank(A+E)+rank(A-E)≥n
这是因为A^2=E∴detA=±1∴A可逆∴rankA=n
而又∵rankA+rankB≥rank(A|B)≥rank(A+B)
∴rank(A+E)+rank(A-E)≥rank2A=rankA=n
再证明rank(A+E)+rank(A-E)≤n
∵(A+E)(A-E)=A^2-E^2=0
∴A-E的列空间是(A+E)X=0的解空间的子空间
又∵A+E的解空间的维数是n-rank(A+E)
∴rank(A-E)≤n-rank(A+E)
∴rank(A-E)+rank(A+E)≤n
综上所述:rank(A+E)+rank(A-E)=n
∴n1+n2=n
∴n维线性空间有一组A的特征向量组成的基.
∴A可对角化
显然去上面的满足Aξ=ξ的n1个线性无关向量,取Aξ=-ξ的n2个线性无关向量
加起来总共n个,将他们以列向量的形式排成一个n阶方阵T,
∵其列秩为n
∴可逆
∴T^(-1)AT=diag(1,1,…,-1,-1)