观察下列不等式1/2×1≥1/1×1/2,1/3×(1+1/3)≥1/2×(1/2+1/4),1/4×(1+1/3+1/
1个回答
第n个不等式:
[1/(n+1)]×[1+1/3+...+1/(2n-1)]≥(1/n)×[1/2+1/4+...+1/(2n)]
相关问题
观察下列等式:1×2=1/3×1×2×3; 1×2+2×3=1/3×2×3×4; 1×2+2×3+3×4=1/3×3×4
观察下列等式1×2=1/3×1×2×3; 1×2+2×3=1/3×2×3×4;1×2+2×3+3×4=1/3×3
观察下列各式:1×2=[1/3](1×2×3-0×1×2);2×3=[1/3](2×3×4-1×2×3);3×4=[1/
观察下列等式:1×2=[1/3]×(1×2×3-0×1×2)2×3=[1/3]×(2×3×4-1×2×3)3×4=[1/
观察下列等式1:1×2=3/1×2×3 2:1×2+2×3=3/1×2×3×43:1×2+2×3+3×4=3/1×3×4
观察[1/1×2]=[1/2],[1/1×2]+[1/2×3]=[2/3],[1/1×2]+[1/2×3]+[1/3×4
观察下列各式:1/1×2=1-1/2;1/2×3=1/2-1/3;1/3×4=1/3-1/4,···
观察下列式子 1 1×2 =1- 1 2 , 1 2×3 = 1 2 - 1 3 , 1 3×4 = 1 3 - 1 4
观察下列计算: 1 1×2 =1- 1 2 1 2×3 = 1 2 - 1 3 1 3×4 = 1 3 - 1 4 1
观察下列计算:[1/1×2]=1-[1/2],[1/2×3]=[1/2]-[1/3],[1/3×4]=[1/3]-[1/