a^3+a^3+b^3>=3*(a^3*a^3*b^3)=3a^2*b
a^3+a^3+c^3>=3*(a^3*a^3*c^3)=3a^2*c
相加得 4a^3+b^3+c^3>=3a^2(b+c)
同理有 4b^3+a^3+c^3>=3b^2(a+c)
4c^3+a^3+b^3>=3c^2(a+b)
三式相加得 6(a^3+b^3+c^3)>=3[a^2(b+c)+b^2(a+c)+c^2(a+b)]
因为a,b,c不全相等,所以不能取等号,两边都除以3得
2(a^3+b^3+c^3)>a^2(b+c)+b^2(a+c)+c^2(a+b)