解题思路:要求函数的解析式,已知已有x>0时的函数解析式,只要根据题意求出x<0及x=0时的即可,根据奇函数的性质容易得f(0)=0,而x<0时,由-x>0及f(-x)=-f(x)可求
设x<0则-x>0
∵当x>0时,f(x)=lgx
∴f(-x)=lg(-x)
由函数f(x)为奇函数可得f(-x)=-f(x)
∴-f(x)=lg(-x)
即f(x)=-lg(-x),x<0
∵f(0)=0
∴f(x)=
lgx,x>0
0,x=0
−lg(−x),x<0
故答案为:
lgx,x>0
0,x=0
−lg(−x),x<0
点评:
本题考点: 函数奇偶性的性质.
考点点评: 本题主要考查了利用函数的奇偶性求解函数的解析式,解题中要注意函数的定义域是R,不用漏掉对x=0时的考虑.