你的结论就是错的如果r(A*)=n 那么r(A)=n 这才是对的
我就证明一个比较难想的即 若r(A)=n-1那么r(A*)=1
由于r(A)=n-1 所以A中有一行为0 |A|=0 有n-1阶非零子式子 所以r(A*)>=1
由于AA*=|A|E=0
r(A*)+r(A)
你的结论就是错的如果r(A*)=n 那么r(A)=n 这才是对的
我就证明一个比较难想的即 若r(A)=n-1那么r(A*)=1
由于r(A)=n-1 所以A中有一行为0 |A|=0 有n-1阶非零子式子 所以r(A*)>=1
由于AA*=|A|E=0
r(A*)+r(A)