(1)成立.
证明:如图(2),∵∠PCM=∠PDM=90°,
∴点C、D在以PM为直径的圆上,
∴AC•AP=AM•AD,BD•BP=BM•BC,
∴AC•AP+BD•BP=AM•MD+BM•BC;
∵AM•MD+BM•BC=AB 2,
∴AP•AC+BP•BD=AB 2.
(2)如图(3),过P作PM⊥AB,交AB的延长线于M,连接AD、BC,则C、M在以PB为直径的圆上;
∴AP•AC=AB•AM①,
∵D、M在以PA为直径的圆上,
∴BP•BD=AB•BM②,
由图象可知:AB=AM-BM③
由①②③可得:AP•AC-BP•BD=AB•(AM-BM)=AB 2.