已知cos(π+α)=1/2,计算sin(2π-α) sin[(2n+1)π+α]+sin[α-(2n+1)π]/sin
2个回答
cos(π+α)=1/2
∴cosa=-1/2
∴sina=±√3/2
∴原式
=[(-sina)(-sina)+(-sina)]/(sinacosa)
=(sina-1)/cosa
=2±√3
相关问题
化简:(1)sin[α+(2n+1)π]•2sin[α−(2n+1)π]sin(α−2nπ)cos(2nπ−α)(n∈Z
已知1/2sin(α-π)=cos(α-2π),求sin(π-α)+5cos(2π-α)/3sin(3π/2+α-sin
化简sin(2π−α)cos(π+α)cos(π−α)sin(3π−α)sin(−α−π)=−1sinα−1sinα.
已知:sin(π+α)=-1/2 计算:sin(π/2+α) cos(α-3π/2) tan(π/2-α)
已知cos(π+α)=-1/2,且α是第四象限角,计算{sin[α+(2n+1)π]+sin[α-(2n+1)π]}
设f(α)=[2sin(π+α)cos(π-α)-cos(π+α)]/[(1+sin^2α+sin(π-α)-cos^2
设f(α)=[2sin(π+α)cos(π-α)-cos(π+α)]/[(1+sin^2α+sin(π-α)-cos^2
sin(π/2+α)·cos(π/2-α)/cos(π+α)+sin(π-α)·cos(π/2+α)/sin(π+α)=
已知f(α)=sin(α−3π)•cos(π+α)cos(2π−α)•sin(−π−α)•sin(3π2−α)
已知f(α)=sin(α−3π)•cos(2π−α)•sin(−α+3π2)cos(−π−α)•sin(−π−α)