limx趋向于0 [e^(x^2)-1]/ln(1+3x^2)]
用洛必达法则:
[e^(x^2)-1/ln(1+3x^2)]'=2xe^(x^2)
[ln(1+3x^2)]'=6x/(1+3x^2)
[2xe^(x^2)]/[6x/(1+3x^2)=(1/3+x^2)e^(x^2)
limx趋向于0 [e^(x^2)-1]/ln(1+3x^2)]=limx趋向于0 (1/3+x^2)e^(x^2)=1/3.
limx趋向于0 [e^(x^2)-1]/ln(1+3x^2)]
用洛必达法则:
[e^(x^2)-1/ln(1+3x^2)]'=2xe^(x^2)
[ln(1+3x^2)]'=6x/(1+3x^2)
[2xe^(x^2)]/[6x/(1+3x^2)=(1/3+x^2)e^(x^2)
limx趋向于0 [e^(x^2)-1]/ln(1+3x^2)]=limx趋向于0 (1/3+x^2)e^(x^2)=1/3.