因为x∈(0,π /2 ),所以sinx>0,cosx>0.由f(x)<f′(x)tanx,得f(x)cosx<f′(x)sinx.即f′(x)sinx-f(x)cosx>0.令g(x)=f(x) /sinx x∈(0,π/2 ),则g′(x)=[f′(x)sinx−f(x)cosx ]/sin2x >0.所以函数g(x)=f(x) /sinx 在x∈(0,π/2 )上为增函数,
f(π/6)=1/2,sinπ/6=1/2,
f(π/6)/sinπ/6=1
要使f(x)>sinx必有f(x)/sinx>1 ,sinx>0
所以x的区间是(π/6,π/2)