解法一:原式=1/2+1/4+1/8+1/16+1/32+(1/64+1/64)-1/64
=1/2+1/4+1/8+1/16+(1/32+1/32)-1/64
=1/2+1/4+1/8+(1/16+1/16)-1/64
=.
=(1/2+1/2)-1/64
=1-1/64
=63/64
解法二:设原式=S,两边同时乘以64,则
64S=32+16+8+4+2+1=63
因此 S=63/64
解法三:原式=1/64(32+16+8+4+2+1)
=1/64*63
=63/64
解法一:原式=1/2+1/4+1/8+1/16+1/32+(1/64+1/64)-1/64
=1/2+1/4+1/8+1/16+(1/32+1/32)-1/64
=1/2+1/4+1/8+(1/16+1/16)-1/64
=.
=(1/2+1/2)-1/64
=1-1/64
=63/64
解法二:设原式=S,两边同时乘以64,则
64S=32+16+8+4+2+1=63
因此 S=63/64
解法三:原式=1/64(32+16+8+4+2+1)
=1/64*63
=63/64