(1)若n为奇数,cos()^2=0,sin()^2=1,所以a(n+2)=a(n)+4,即a(n)=a(n-2)+4=a(n-4)+2x4=.=a(1)+4(n-1)/2=1+4(n-1)/2
(2)若n为偶数,cos()^2=1,sin()^2=0,所以a(n+2)=2a(n),即a(n)=2a(n-2)=4a(n-4)=.=2^(n-2)/2a(2)=2^n/2
(3)所以a(3)=a(1)+4=5,a(4)=2a(2)=4,通项公式见(1)(2)
ps:跟朋友一直聊天 才想起还有没弄结束 现在补上
二(1)
b(n)=[1+4(2n-1-1)/2]/(2^n)=4n-3/2^n
s(n)=1/2+5/4+9/8+13/16+.+4n-7/2^(n-1)+4n-3/2^n
0.5s(n)=1/4+5/8+9/16+.+4n-7/2^n+4n-3/2^(n+1)
s(n)-0.5s(n)=1/2+4/4+4/8+4/16+.+4/2^n+4n-3/2^(n+1)
=1/2+4(1/4+1/8+1/16+...+1/2^n)+4n-3/2^(n+1)
=1/2+2(1-0.5^n)+4n-3/2^(n+1)
所以s(n)=1+4(1-0.5^n)+4n-3/2^n