.已知直线L被两直线L1:3X+4Y-7=0和L2:3X+4Y+8=0截得线段长为15/4且L过点P(2,3),求直线L的方程
因为直线L1,L2斜率均为-3/4,所以L1//L2
那么,它们之间的距离为d=|c1-c2|/√(a^2+b^2)=|-7-8|/√(3^2+4^2)=3
设直线L的斜率为k,且直线L1到L的角为α;
已知L被L1、L2截得的线段长度为15/4
则在直角三角形中,由勾股定理得到另一条直角边的长度为9/4
所以,tanα=3/(9/4)=4/3
则由直线间角度公式有:tanα=(k-k1)/(1+k*k1)
=[k-(-3/4)]/[1+k*(-3/4)]
=[k+(3/4)]/[1-k*(3/4)]=4/3
解得,k=7/24
又,直线L过点P(2,3)
所以,直线L的方程为:y-3=(7/24)(x-2)
即:7x-24y+58=0
而,当过点P的直线的斜率不存在时,即直线x=2
它与L1、L2的交点的纵坐标为y1=1/4,y2=-14/4
所以,两个交点间的距离为|y1-y2|=|(1/4)-(-14/4)|=15/4
所以,直线x=2也满足条件
故,过点P(2,3)的直线有两条,分别为:
7x-24y+58=0,或者x=2