(a+b+c)(1/a+1/b+1/c)=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=1+(b+c)/a+1+(a+c)/b+1+(a+b)/c
=3+(a/b+b/a)+(a/c+c/a)+(b/c+c/b)
>=3+2+2+2=9
当且仅当a=b=c时等号成立
(a+b+c)(1/a+1/b+1/c)=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=1+(b+c)/a+1+(a+c)/b+1+(a+b)/c
=3+(a/b+b/a)+(a/c+c/a)+(b/c+c/b)
>=3+2+2+2=9
当且仅当a=b=c时等号成立