证明:
必要性:因为关于x的方程ax^2+bx+c=0有一个根为1,
所以把x=1代人方程ax^2+bx+c=0可得:a+b+c=0;
充分性:因为a+b+c=0,所以c=-a-b
则方程ax^2+bx+c=0可化为:ax^2+bx-a-b=0
整理可得:(x-1)(ax+a+b)=0
所以x=1是方程ax^2+bx+c=0的一个根.
证明:
必要性:因为关于x的方程ax^2+bx+c=0有一个根为1,
所以把x=1代人方程ax^2+bx+c=0可得:a+b+c=0;
充分性:因为a+b+c=0,所以c=-a-b
则方程ax^2+bx+c=0可化为:ax^2+bx-a-b=0
整理可得:(x-1)(ax+a+b)=0
所以x=1是方程ax^2+bx+c=0的一个根.