m:x = x:n
即x^2 = mn,代入原式得
1/(m^2-mn) + 1/(n^2-mn) + 1/mn = 1/[m(m-n)] + 1/[n(n-m)] + 1/mn
通分可得
原式 = n / [mn(m-n)] - m / [mn(m-n)] + (m-n) / [mn(m-n)]
= (n-m + m-n) / [mn(m-n)]
= 0
m:x = x:n
即x^2 = mn,代入原式得
1/(m^2-mn) + 1/(n^2-mn) + 1/mn = 1/[m(m-n)] + 1/[n(n-m)] + 1/mn
通分可得
原式 = n / [mn(m-n)] - m / [mn(m-n)] + (m-n) / [mn(m-n)]
= (n-m + m-n) / [mn(m-n)]
= 0