1.an+1=(a-1)Sn+2
a(n-1)+1=(a-1)S(n+a)+2
所以,an-a(n-1)=(a-1)(Sn-S(n-1))=(a-1)an
即,a*an=a(n-1) 所以数列{an}是等比数列.
2.若a=2,则an=2^n
bn=(1/n)log2(a1*a2*a3*…*an)
=(1/n)log2[2^(1+2+3……+n)]
=(1/n) log 2 [2^(1/2n(n+1))]
=(1/2)*(1/n)*n(n+1)
=(n+1)/2
1.an+1=(a-1)Sn+2
a(n-1)+1=(a-1)S(n+a)+2
所以,an-a(n-1)=(a-1)(Sn-S(n-1))=(a-1)an
即,a*an=a(n-1) 所以数列{an}是等比数列.
2.若a=2,则an=2^n
bn=(1/n)log2(a1*a2*a3*…*an)
=(1/n)log2[2^(1+2+3……+n)]
=(1/n) log 2 [2^(1/2n(n+1))]
=(1/2)*(1/n)*n(n+1)
=(n+1)/2