已知数列满足:a1=1,a(n+1)=an+1,n为奇数;2an,n为偶数,设bn=a2n-1,

1个回答

  • (I)

    a(n+1)=an +1 ,n is odd

    =2an ,n is even

    bn=a(2n) -1

    a1=1

    a2 =a1+1 =2

    if n is odd,

    a(n+1) = an +1

    = 2a(n-1) +1

    a(n+1) +1 = 2[ (a(n-1) +1 ]

    a(n+1) +1 = 2^[( n-1)/2 ].(a2 +1 )

    = 3.2^[( n-1)/2 ]

    a(n+1) = -1+3.2^[( n-1)/2 ]

    n is odd => n= 2m-1

    a(2m) =-1+3.2^(m-1)

    bn = a(2n) -1

    =-2+3.2^(n-1)

    b2 = -2+3.2 = 4

    b3= -2+3.4= 10

    b(n+1) =-2+3.2^n

    =2(-2+3.2^(n-1)) +2

    =2bn +2

    (II)

    (1)

    bn+2 =3.2^(n-1)

    {bn+2}是等比数列,q=3

    (2)

    if n is even,

    a(n+1)=2an

    = 2(a(n-1)+1)

    a(n+1)+2 =2(a(n-1)+2)

    = 2^(n/2).(a1+2)

    =3.2^(n/2)

    a(n+1) =-2+3.2^(n/2)

    n is even ,n=2k

    a(2k+1) =-2+3.2^k

    a(2k),a(2k+1),9+a(2k+2)成等比数列

    a(2k).[9+a(2k+2)]= [a(2k+1)]^2

    [-1+3.2^(k-1) ].(8+3.2^k ) =(-2+3.2^k)^2

    -8-3.2^k+12.2^k +9.2^(2k-1) = 4 -12.2^k + 9.2^(2k)

    (9/2).2^(2k) -21.2^k +12=0

    9.2^(2k) -42.2^k +24=0

    (2^k -4)(9.2^k-6)=0

    2^k=4

    k=2