x2-4x-12=0的两个根
x1=-2,x2=6
A(-2,0),B(6,0)
抛物线对称轴x=2
标准方程y=a(x-2)^2+b
把A,C代入得
0=16a+b
4=4a+b
两式相减得
a=-1/3,b=16/3
y=-1/3(x-2)^2+16/3
(2)设M(x0,0)
AC方程y=2(x+2)
BC方程y=-2/3(x-2)
MN方程y=-2/3(x-x0)
MN,AC联立得N((x0-6)/4,(x0+2)/2)
MN=√{[(x0-6)/4-x0]^2+[(x0+2)/2]^2}
=√13/4*(x0+2)
C到MN的距离为|4-2/3x0|/√[(2/3)^2+1]=2(4-2/3x0)/√13
所以S△CMN=1/2*√13/4*(x0+2)*2(4-2/3x0)/√13
=(x0+2)*(4-2/3x0)/4
=(x0+2)*(3-x0)/6
=1/6*(-x0^2+x0+6)
=-1/6*(x0^2-x0-6)
=-1/6*(x0^2-x0+1/4-1/4)+1
=-1/6*(x0-1/2)^2+1+1/24
当x0=-1/2时有最大值25/24