∫(0~1) [4√(1 - x²) - 2x√(1 - x²)] dx
= 4∫(0~1) √(1 - x²) dx - 2∫(0~1) x√(1 - x²) dx
对於前一项积分,令x = sinz,dx = cosz dz
= 4∫(0~π/2) cos²z dz - 2∫(0~1) √(1 - x²) d(x²/2)
= 2∫(0~π/2) (1 + cos2z) dz + ∫(0~1) √(1 - x²) d(1 - x²)
= 2[z + 1/2 * sin2z] |(0~π/2) + (2/3)(1 - x²)^(3/2) |(0~1)
= 2(π/2) + (2/3)[0 - 1]
= π - 2/3