∵∠ABC+∠ACB+∠A=180,∠ABC=∠ACB=2∠A
∴2∠A+2∠A+∠A=180
∴∠A=36
∴∠ABC=∠ACB=2∠A=72
∵BD⊥AC
∴∠CBD+∠ACB=90
∴∠CBD=90-∠ACB=90-72=18
∵BE平分∠ABC
∴∠CBE=∠ABC/2=72/2=36
∴∠EBD=∠CBE-∠CBD=36-18=18°
∵∠ABC+∠ACB+∠A=180,∠ABC=∠ACB=2∠A
∴2∠A+2∠A+∠A=180
∴∠A=36
∴∠ABC=∠ACB=2∠A=72
∵BD⊥AC
∴∠CBD+∠ACB=90
∴∠CBD=90-∠ACB=90-72=18
∵BE平分∠ABC
∴∠CBE=∠ABC/2=72/2=36
∴∠EBD=∠CBE-∠CBD=36-18=18°