(1)
an=a1+(n-1)d
bn=b1.q^(n-1)
a1=3,b1=1
Sn = a1+a2+...+an
b2.S2=64
q(6+d)=64 (1)
b3.S3=960
q^2.(3+d)3=960
q^2.(3+d)=320 (2)
(2)/(1)^2
(3+d)/(6+d)^2= 5/64
64(3+d)= 5(6+d)^2
5d^2-4d-12 =0
(d-2)(5d+6)=0
d=2
from (1) ,q=8
an = 3+2(n-1)=2n+1
bn=8^(n-1)
(2)
Sn = a1+a2+...+an
= (n+2)n
1/Sn = (1/2)[1/n - 1/(n+2)]
1/S1+1/S2+...+1/Sn
=(1/2)[ 1+ 1/2 - 1/(n+1) -1/(n+2) ]
< (1/2)(1+1/2)
= 3/4