等腰三角形或直角三角形
证明:a^2*tanB=b^2*tanA
a^2/b^2=tanA/tanB
sin^2A/sin^2B=sinAcosB/sinBcosA
sinA/sinB(sinA/sinB-cosB/cosA)=0
=>sinA/sinB=cosB/cosA
sinAcosA=sinBcosB
sin2A=sin2B
由此可得A=B或A+B=∏/2
等腰三角形或直角三角形
证明:a^2*tanB=b^2*tanA
a^2/b^2=tanA/tanB
sin^2A/sin^2B=sinAcosB/sinBcosA
sinA/sinB(sinA/sinB-cosB/cosA)=0
=>sinA/sinB=cosB/cosA
sinAcosA=sinBcosB
sin2A=sin2B
由此可得A=B或A+B=∏/2