1)Dz/Dx = (Dz/Du)(Du/Dx)+(Dz/Dv)(Dv/Dx) = (2u)*1+(2v)*1 = ……,
Dz/Dy = (Dz/Du)(Du/Dy)+(Dz/Dv)(Dv/Dy) = (2u)*1+(2v)*(-1) = …….
2)取对数,得
ln|z| = ln(x²+y²)-ln|x|-ln|y|+[(x²+y²)/xy],
求微分,得
dz/z = [1/(x²+y²)]*(2xdx+2ydy)-dx/x-dy/y+[(2xdx+2ydy)*(xy)-(x²+y²)(ydx+xdy)]/(xy)²,
整理成
dz = -------dx+-------dy
的形式,即得
Dz/Dx = ……,
Dz/Dy = …….