求定积分∫dx/[(x^2)*((1+x^2)^(1/2))],其中积分上限是根号3,积分下限是1,求详细过程~

3个回答

  • F(x)=∫dx/[(x^2)*((1+x^2)^(1/2))]

    设x=tant,则dx=sec²tdt,∵x∈[1,√3],∴t∈[π/4,π/3]

    ∴F(x)=∫dx/[(x^2)*((1+x^2)^(1/2))] x∈[1,√3]

    =∫sec²tdt/[tan²t*(1+tan²t)^(1/2)] t∈[π/4,π/3]

    =∫sec²tdt/(tan²t*sect)

    =∫sectdt/tan²t

    =∫(cos²t/sin²t)*(1/cost)*dt

    =∫(cost/sin²t)dt

    =∫dsint/sin²t

    =(-1/sint) t∈[π/4,π/3]

    =1/sin(π/4)-1/sin(π/3)

    =2/√2-2/√3

    =(3√2-2√3)/3