(1)由c^2=a^2+b^2-ab可得a^2+b^2-c^2=ab
又cosC=(a^2+b^2-c^2)/2ab=1/2
所以在三角形中C=π/3
tanA-tanB=√3/3(1+tanAtanB)
又tan(A-B)=(tanA-tanB)/(1+tanAtanB)=√3/3
所以A-B=π/6
又A+B=180-C=2π/3
所以B=π/4
(2)m*n=3sinA+cos2A=-2(sinA)^2+3sinA+1
=-(sinA-3/2)^2+1+9/4
因为A的范围为(0,2π/3)
当sinA=1时,m*n有最大值3