(
+1,
+1)
∵OB=2,OA="2"
,
∴AB=
=4,
∵∠AOP=45°,
P点横纵坐标相等,可设为a.Ⅲ
∵∠AOB=90°,
∴AB是直径,
∴Rt△AOB外接圆的圆心为AB中点,坐标C(
,1),
P点在圆上,P点到圆心的距离为圆的半径2.
过点C作CF∥OA,过点P作PE⊥OA于E交CF于F,
∴∠CFP=90°,
∴PF=a﹣1,CF=a﹣
,PC=2,
∴(a﹣
) 2+(a﹣1) 2=2 2,舍去不合适的根,
可得a=1+
,P(1+
,1+
);
即P点坐标为(
+1,
+1).