证明:延长BC至P点,使CP=BC,连接AP
∵AB=AC,BD=AB
∴∠ABC=∠ACB,AC=BD
∴180°-∠ABC=180°-∠ACB
即:∠DBC=∠ACP
又∵BC=CP
∴△DBC≌△ACP(SAS)
∴AP=CD
∵AE=BE,BC=CP
∴CE为△ABP的中位线
∴CE=½AP
∴CE=½CD
即:CD=2CE
希望以上解答对你有所帮助
证明:延长BC至P点,使CP=BC,连接AP
∵AB=AC,BD=AB
∴∠ABC=∠ACB,AC=BD
∴180°-∠ABC=180°-∠ACB
即:∠DBC=∠ACP
又∵BC=CP
∴△DBC≌△ACP(SAS)
∴AP=CD
∵AE=BE,BC=CP
∴CE为△ABP的中位线
∴CE=½AP
∴CE=½CD
即:CD=2CE
希望以上解答对你有所帮助