高一二倍角三角函数1.求证:(sinx+cosx-1)(sinx-cosx+1)/sin2x=tanx/22.化简:(1

3个回答

  • 1.证明:(sinx+cosx-1)(sinx-cosx+1)/sin2x=tanx/2

    (sinx+cosx-1)(sinx-cosx+1)/sin2x

    =[sinx+(cosx-1)][sinx-(cosx-1)]/sin2x

    =[(sinx)^2-(cosx-1)^2]/sin2x

    =[(sinx)^2-(cosx)^2-1+2cosx]/sin2x

    =[2cosx-2(cosx)^2]/sin2x

    =2cosx(1-cosx)/2sinxcosx

    =(1-cox)/sinx

    =tanx/2 得证

    2.化简:

    (1+sin4x-cos4x)/(1+sin4x+cos4x) - (1+sin4x+cos4x)/(1+sin4x-cos4x) 通分

    =[(1+sin4x-cos4x)^2+(1+sin4x+cos4x)^2]/[(1+sin4x+cos4x)*(1+sin4x-cos4x)]

    =[1+(sin4x)^2+(cos4x)^2+2sin4x-2cos4x-2sin4xcos4x+1+(sin4x)^2+(cos4x)^2+2sin4x+2cos4x+2sin4xcos4x]/[(1+sin4x)^2-(cos4x)^2]

    =[2+2(sin4x)^2+2(cos4x)^2+4sin4x]/[1+2sin4x+(sin4x)^2-(cos4x)^2]

    =[2+2+4sin4x]/[2sin4x+2(sin4x)^2]

    =4[1+sin4x]/[2sin4x(1+sin4x)]

    =2/sin4x

    3.已知sin(π/4 -x)=5/13,0