∵AD=AB
∴∠D=∠DAB=1/2∠CBF
∵BE平分∠CBF
∴∠EBF=1/2∠CBF=∠DAB
∵AB=BE
∴∠BAE=∠E
∵∠EBF=∠BAE+∠E
∴∠EBF=2∠BAE=∠DAB
∵AD平分∠GAB
∴∠GAD=∠DAB=2∠BAE
∵∠DAB+∠GAD+∠BAE=180°
∴5∠BAE=180º,∠BAE=36º
∵AD=AB
∴∠D=∠DAB=1/2∠CBF
∵BE平分∠CBF
∴∠EBF=1/2∠CBF=∠DAB
∵AB=BE
∴∠BAE=∠E
∵∠EBF=∠BAE+∠E
∴∠EBF=2∠BAE=∠DAB
∵AD平分∠GAB
∴∠GAD=∠DAB=2∠BAE
∵∠DAB+∠GAD+∠BAE=180°
∴5∠BAE=180º,∠BAE=36º