tanx=(2tan(x/2))/(1-(tan(x/2))2)
1=(tan(x/2))2+(2tan(x/2))/tanx
(tan(x/2)+1/tanx)2=1+1/(tanx)2
因为1+1/(tanx)2=((tanx)2+1)/(tanx)2=1/(sinx)2
所以tan(x/2)+1/tanx=1/sinx
tan(x/2)=1/sinx-cosx/sinx=(1-cosx)/sinx
(sinx)2=(1+cosx)*(1-cosx) 1-cosx=(sinx)2/(1+cosx)
sinx/(1+cosx)=(1-cosx)/sinx
tan(x/2)=sinx/(1+cosx)=(1-cosx)/sinx (紧跟括号后面的是平方.)