设2001=a
则
2001*2002*2003*2004+1
a(a+1)(a+2)(a+3)+1
=[a(a+3)][(a+1)(a+2)]+1
=(a^2+3a)(a^2+3a+2)+1
=(a^2+3a)^2+2(a^2+3a)+1
==(a^2+3a+1)^2
所以
原式=a²+3a+1+-a²-2a-1
=a
=2001
设2001=a
则
2001*2002*2003*2004+1
a(a+1)(a+2)(a+3)+1
=[a(a+3)][(a+1)(a+2)]+1
=(a^2+3a)(a^2+3a+2)+1
=(a^2+3a)^2+2(a^2+3a)+1
==(a^2+3a+1)^2
所以
原式=a²+3a+1+-a²-2a-1
=a
=2001