记x的三次方为x^3,x的三次方根为x^(1/3)
如果 a^3+b^3+c^3 >= 3abc
那么 a+b+c
= (a^(1/3))^3 + (b^(1/3))^3 + (c^(1/3))^3
>= 3 a^(1/3) b^(1/3) c^(1/3)
= 3 (abc)^(1/3)
记x的三次方为x^3,x的三次方根为x^(1/3)
如果 a^3+b^3+c^3 >= 3abc
那么 a+b+c
= (a^(1/3))^3 + (b^(1/3))^3 + (c^(1/3))^3
>= 3 a^(1/3) b^(1/3) c^(1/3)
= 3 (abc)^(1/3)