n趋于无穷时1/n趋于0,因此1/n和sin(1/n)都是无穷小,而sinn是有界量,根据无穷小和有界量的乘积是无穷小,可知lim(1/n)sinn=0,lim(1/n)sin(1/n)=0,而1/n趋于0时sin1/n和1/n是等价无穷小,因此limnsin(1/n)=limn(1/n)=1,所以极限=1
极限 lim(x-->无穷)(1/n sin(n)+1/n sin(1/n)+nsin(1/n))
1个回答
相关问题
-
求极限:lim((2n∧2-3n+1)/n+1)×sin n趋于无穷
-
求极限lim(n→无穷) (三次根号下n^2)*sin /(n+1)
-
一个高数极限的问题n趋于无穷,有lim[(1/n)*sin n ]=lim(1/n)*lim(sinn)=0*lim(s
-
求极限lim(n→∞)(e^(1/n)-2sin(1/n))^n
-
极限limn→无穷 (2n^2-3n+1)/n+1 sin1/n
-
lim n→无穷 (n+1/n-1)^n求极限
-
lim sin[π(n^2+1)^1/2] n趋向无穷求极限 求详解
-
求极限值求lim(n→∞)(sin(1/n^2)+sin(2/n^2)+…sin(n/n^2))
-
..n*sin^n-1 x*cosx*cosnx+nsin^n x*(-sinnx)化简是怎么得到nsin^n-1*co
-
lim1/n(sin1/n+……+sin(n-1)/n)=?n趋向无穷大