设正四面体棱长为a,顶点为A,高为AM,球心为O.
则有AM^2=[(√3a)/2]^2-[(√3a)/6]^2
得AM=AO+OM=R+OM=(2a√6)/6①
有OM/R=1/3②
由得①②a=4R/(a√6)
又因为可求底面S=[(√3)/4]*a^2
v=(1/3)*S底面*AM=(√2)/12a^3
∴所求其内接正四面体体积v={(8√3/27]*R^3
设正四面体棱长为a,顶点为A,高为AM,球心为O.
则有AM^2=[(√3a)/2]^2-[(√3a)/6]^2
得AM=AO+OM=R+OM=(2a√6)/6①
有OM/R=1/3②
由得①②a=4R/(a√6)
又因为可求底面S=[(√3)/4]*a^2
v=(1/3)*S底面*AM=(√2)/12a^3
∴所求其内接正四面体体积v={(8√3/27]*R^3