证明:(1)当n=2时,交点个数为1=2*1/2,满足上式
(2)假设当n=k(k∈Z)时,上式成立
即f(k)=[k(k-1)]/2成立
那么,当n=k+1时,
第k+1条直线,与前n条直线各出现一个交点,共增加k个交点
所以,f(k+1)=f(k)+k=(k²+k)/2=[(k+1)(k+2)]/2
即,当n=k+1(k∈Z)时,原式也成立
综上所述,当n为任意正整数时,原命题成立
这个过程很完整了
证明:(1)当n=2时,交点个数为1=2*1/2,满足上式
(2)假设当n=k(k∈Z)时,上式成立
即f(k)=[k(k-1)]/2成立
那么,当n=k+1时,
第k+1条直线,与前n条直线各出现一个交点,共增加k个交点
所以,f(k+1)=f(k)+k=(k²+k)/2=[(k+1)(k+2)]/2
即,当n=k+1(k∈Z)时,原式也成立
综上所述,当n为任意正整数时,原命题成立
这个过程很完整了