判断:必然事件是基本空间的某一真子集 请举例说明!

1个回答

  • 对的.

    例如,在连续掷两次骰子的随机试验中,用Z,Y分别表示第一次和第二次出现的点数,Z和Y可以取值1、2、3、4、5、6,每一点(Z,Y)表示一个基本事件,因而基本空间包含36个元素.“点数之和为2”是一事件,它是由一个基本事件(1,1)组成,可用集合{(1,1)}表示“点数之和为4”也是一事件,它由(1,3),(2,2),(3,1)3个基本事件组成,可用集合{(1,3),(3,1),(2,2)}表示.如果把“点数之和为1”也看成事件,则它是一个不包含任何基本事件的事件,称为不可能事件.在试验中此事件不可能发生.如果把“点数之和小于40”看成一事件,它包含所有基本事件 ,在试验中此事件一定发生,所以称为必然事件.若A是一事件,则“事件A不发生”也是一个事件,称为事件A的对立事件.

    2.1-0.5-0.1=0.4