如何计算下列行列式?a2 (a+1)2 (a+2)2 (a+3)2 b2 (b+1)2 (b+2)2 (b+3)2 c2

2个回答

  • 结果为0

    1)每一列都减去第一列的-1倍,把第三列的系数2和第四列的系数3提出得:

    a*a 2*a+1 2*a+2 2*a+3

    b*b 2*b+1 2*b+2 2*b+3

    c*c 2*c+1 2*c+2 2*c+3

    d*d 2*d+1 2*d+2 2*d+3

    设上式为M

    行列式D=6M

    2)把第二列加到第四列得:

    a*a 2*a+1 2*a+2 4*a+4

    b*b 2*b+1 2*b+2 4*b+4

    c*c 2*c+1 2*c+2 4*c+4

    d*d 2*d+1 2*d+2 4*d+4

    3)把第三列与第四列的系数2和4提出得到同样的数据

    即第三列于第四列相同

    所以所得到的新的行列式等于零

    故原行列式等于零