带入函数两边同时化简可得:要使得f(x0+1)=f(x0)+f(1)成立须有a+a^2+a*(2^x)=0,可知当a=0时对任意的x都∈M,当a不等于0时,要a=-1-2^x,同时真数部分大于0,即a>-2^x,可知这样的a不存在,因此a=0
已知集合M={f(x)|在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立}.
1个回答
相关问题
-
已知:集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
-
已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
-
已知集合M是满足下列性质的函数f(x)的全体,在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立
-
已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立
-
已知集合M是满足下列性质的函数f(x)的全体,在定义域D内存在X0,使得f(x0+1)=f(x0)+f(1)成立
-
已知集合M是满足下列性质的函数f(x)的全体:在定义域D内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
-
已知集合M是满足下列性质的函数f(x)的全体:在定义域D内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
-
已知集合H是满足下列条件的函数f(x)的全体:在定义域内存在实数x0使得f(x0+1)=f(x0)+f(1)成立.密函.
-
已知集合M是满足下列性质的函数f(x)的全体:在定义域D内存在x0,使得f(x0+1)=f(x0)+1成立.
-
已知集合是满足下列性质的函数f(x)的全体:在定义域D内存在x0,使得f(x0+1)=f(x0)+f(1)成立.