∫∫∫z^2 区域是两个球体的公共部分 X^2+Y^2+Z^2=R^2 和 X^2+Y^2+Z^2=2RZ

2个回答

  • 两球面的交线方程整理后是z=R/2,x^2+y^2=3R^2/4.这里用直角坐标系下的先二后一的积分顺序,先xy后z.

    整个区域分为两部分,上面一部分表示为:R/2≤z≤R,x^2+y^2≤R^2-z^2;下面一部分表示为:R/2≤z≤R,x^2+y^2≤2Rz-z^2.

    ∫∫∫z^2dv=∫(R/2到R) z^2dz ∫∫(x^2+y^2≤R^2-z^2) dxdy+∫(0到R/2) z^2dz ∫∫(x^2+y^2≤2Rz-z^2) dxdy=∫(R/2到R) πz^2(R^2-z^2) dz+∫(0到R/2) πz^2(2Rz-z^2) dz=47πR^5/360+πR^5/40=59πR^5/480